HEATING OF MASSIVE BODIES BY VARIABLE-INTENSITY
RADIANT HEAT SOURCE

V. V. Salomatov UDC 536.3

Radiant heating of solid bodies in a variable-temperature medium is investigated. The prob-
lem is reduced to a nonlinear Volterra integral equation of the second kind, for which the clas-
sical gsuccessive~approximation method converges. Subsequent analysis of the resulting func-
tional equation brings to light certain properties of the temperature field; they are used as a
basis for an engineering computational method for the given heat-conduction problem.

In connection with problems involving optimal control of heating for massive bodies, much attention
is now being given to the development of analytic computational methods fornonstationary temperature fields
where the high-intensity heat sources vary in temperature. The problem is one in mathematical physics,
with a substantial nonlinearity in the boundary condition; the solution poses serious difficulties. As a rule,
when we are concerned with the kinetics of heating, we employ various approximate, basically numerical
computational methods. As an example, we have [1, 2], where a computer was used to obtain numerical data
on the temperature field in solids heated by radiation, where the source temperature was variable. It was
possible to use copious numerical material to analyze the radiant heat flux at the surface of the heated body,
and to find a law governing the quasistationary regime in the heating-process dynamics. In [3], segments
of cubic parabolas were used to approximate the thermal -conductivity and heat-capacity relationships in
order to linearize the system of differential equations describing radiant heating. A similar approach was
employed simultaneously and independently in [4]. Hoffmann [5] has given a rather cumbersome solution
obtained with a piecewise-linear approximation to the nonlinear intrinsic-emission flux.

The present investigation, which represents a continuation of [1], was undertaken with the aim of ob-
taining computational equations for the nonstationary temperature field with an arbitrary variation in 8,(Fo);
analysis of the resulting solutions yields an engineering computational method for the most common types
of variation in the temperature of radiant media.

The mathematical model employed for the given physical problem is based on the heat-conduction
equation

08 (X, Fo) =X~V~a— xv 08 (X, Fo) (1)
dFo 0X oX
with initial condition

0(X, 0) =26, (2

and boundary conditions
(0, Fo) _ 3

ox ’

@%)'TFB)_ — Sk [ 8¢ (Fo) — 6*(1, Fo)], (4

where 6,(Fo) is any differentiable function, 0 =X =1, 0 < Fo =< .

Approximate Analytic Method. A formal representation of the temperature field can be obtained by
reducing the boundary-value problem (1)-(4) to a functional equation. Let us determine the finite integral
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transform that permits us to eliminate the differential operations with respect to X. According to the
general theory of finite integral transforms [6-8], the kernel for the direct transformation is represented
as

R (X, p) = C—l o (K (X, p). ()
p

1
where ¢, = gp(X)[K(X,p)]ZdX is the normalizing factor.
0

The function K(X, p) is found from the solution of the corresponding Sturm -Liouville boundary-value
problem with the homogeneous boundary conditions

x4 (XV E_TS) +pK = 0;

aX dX
dK | g dK| g v (6)
dX [x=1 dX |x=0
dK _
2N < oo, v= 12
dX |x=o

The eigenfunctions K of this problem are orthogonal on the segment [0, 1] with weight p(X), while the eigen~
values p are the positive roots of the equation f(p) = 0.

Performing the integral transformation with kernel (5) and interval of integration [0, 1], we trans-
form the initial problem (1)-(4) to an ordinary differential equation with respect to the image, including the
specified boundary conditions,

do’ .
{0, YO — 5 (p, Fo) +  [p, 6(Fo), 8:(1, Fo, 0
where

® = (— 1)*Sk [8¢(Fo) — 6% (1, Fo)|, p=nm, n=0, 1, 2, ..., v=0;

@ = J, (p) Sk [ 83 (Fo) — 6* (1, Fo)], J;(p) =0, v=1;

®= P gk [of(Fo) —6* (1, Fo)], tgp=p, v=2.
p

The initial condition becomes
1

6 (p, Fo) = -%Q‘ j'P(X)R(p, X)dX. (8)

Py

The solution of the transformed problem (7), (8) is
Fo
0 (p, Fo) = exp[— p*Fo] (8(p, 0) + j @ [p, 8¢ (n), 6* (1, w)] exp ip*nl dn}- (9)
0
Using the inversion formula [6-8]
8 (X, Fo) = Eé(pi, Fo) K (p:X), {10)

Pi

we obtain an expression for the temperature field
1 Fo
_ ) - ( ;
8(X, Fo)= K (p, X)eXP(—p%Fo)[—“Xp(X)K(pi, X)dX+j D [p;, 03(n), O (L, m)] exp (pm)dn |. (11)
p; CP b 0
Relationship (11) gives a formal representation of the temperature at any point in the body in terms of its

value at the surface. Letting X =1, from (11) we obtain a nonlinear Volterra integral equation of the second
kind for 6(1, Fo):
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1

001, 7o) = XK (p, Dexp(—piFo) 2 0 (X) Koy, XX
sy L

Fo (12)
N fgmi, D® [p, 64(n), 6%(1, )] exp[— g2 (Fo —n)] dn.
0 P

The method of successive approximations is one of the most effective ways of solving functional
equations of the type (12). Proving the absolute and uniform convergence of the series following the inte-
gral sign, we use estimates of the type

B EK(p, VO [p, 6L(m), 6* (1, n)] exp [— p (Fo—m)]

P

<I2K @, O [, 0@, (1, n)] exp [— pf Fo—)]|
Pi

<| oo, o1, ] | Dexo [—pf Fo—n]| <|o[eiem), o1, m)] V7

2(Fo—mn)'”? E (13)

to justify the changed order of summation and integration in (12). It also follows from (13) that the kernel
of the integral equation has a singularity at Fo = 1. As Tikhonov has shown {9] in his investigations of non-
linear Volterra integral equations of the second kind, a singularity of the form (Fo—r/)'i/2 in the kernel can
easily be removed, and the successive-approximation process converges for such equations. Substituting
the expressions found for the surface temperature into (11) and performing the uncomplicated integration,
we obtain the final solution for the initial problem (1)~(4).

Engineering Method. Further investigation of (11) discloses a certain property of the temperature
field. The nonlinear functional equation (11) is difficult to solve owing to the presence of the term of the

Fo
form § 64(1, n)exp (p%n)dn. Let us evaluate this integral,
0

n—1

Fo .
f 04 (1, m)exp(pm) dn== N 64 (1, a,)exp (play) Amy, (14)
0

k=0

where oy is an arbitrary point on the partial segment [, 7 44]. Writing out the series (14) and isolating
its first term with allowance for the initial condition (2), we obtain
- n—1

BoAn, + ) 04 (1, ) exp (ploy) An,. (15)

k=1
Remembering that the integrand is strictly increasing, we now have no difficulty in seeing that for
moderate values of 0, the value of the integral is a very weak function of the temperature level at the be-
ginning of heating. Then the integral (14), which represents the self-radiation of the body, will be evaluated
with a certain error. But in the heating of massive bodies, the decisive role is played by internal heat
transfer, so that slight distortions in the resultant heat flux owing to approximate determination of the self-
radiation may not substantially modify the temperature field.

Thus on the basis of the approximate estimate of (14), using (11), we can establish the existence of a
nearly linear relationship of the temperature field with respect to 6, for identical values of the controlling
criteria 8k, X, Fo, 0,.

Analysis of temperature fields computed from (11), (12) shows that this property is satisfied up to
values 8; = 0.6.

The mathematically obtained law is expressed as
0 (X, Fo)—6%(X, Fo) %% (X, Fo) —6*(X, Fo)
8, — 0o - 8 — 65 '

where 0%(X, Fo), 8 **X, Fo) are the respective dimensionless temperatures for the minimum (87 and the
maximum (65"*) values of initial temperature for the same values of 8k, X, Fo, 6,. The structure of (16)

(16)
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is such that when the temperature distributions are known, for two values of the initial temperature we can

compute the temperature field for arbitrary 8,

8** (X, Fo)— 0* (X, Fo)
80 — 6o ’

(X, Fo) = 8*(X, Fo) + (8, — 67) an

The more effective relationship (17) can be realized graphically; to do this, we must know the solu-
tions for two values of 8,. We obtained the solutions by numerical intergration of Egs. (11), (12) on an
M-~20 computer, with the process parameters Sk = 0-4, Fo = 0-«, with a linear variation in the emitter
temperature, 8,(Fo) =1 + PdFo, where Pd = 0-0.25; 0, was taken equal to 0.2 and 0.6.

Figure 1 (A-D) shows computational nomograms for determining the dimensionless temperatures at
the surface and at the center of an unbounded plate, and also at the surface and on the axis of an infinite
cylinder. ’

Comparing our calculated results with reference data obtained by computer, we see that for the rela-
tive temperatures, the deviations do not exceed 1-2%, and tend to make the results too low. It should be
noted that a similar approach can be used to investigate radiant heat-conduction processes in multidimen-
sional bodies (a cylinder of finite dimensions, a prism, a parallelepiped), and can also be employed for other
types of variation in the temperature of the radiating medium (exponential, parabolic, ete.).

We also note that the proposed nomograms can also be used when 6,< 0.2. Computational accuracy
can be improved if we employ solutions for a narrower range of values of the initial temperature.

The key to the nomograms is shown in Fig. 1 for the following process parameters: Pd = 0.15; Sk
=1.0; Fo =0.15; 6, =10.35. The desired relative temperature at the surface of an unbounded plate is
fgur = 0.736.

NOTATION

8 = T/TCO is the relative temperature, i.e., the ratio of the instantaneous temperature to
the initial temperature of the heat source;
Sk = oa(Tco/100)3R/7\~ 100 is the radiation Stark number;

v is a coefficient that allows for the shape of the body, and is numerically equal
to 0, 1, and 2 for the plane, cylindrical, and spherical problems;
Pd =kR%/T¢ga is the Predvoditelev number for heating at a constant rate.
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