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Radiant heating of solid bodies in a variable-temperature medium is investigated. The prob- 
lem is reduced to a nonlinear Volterra integral equation of the second kind, for which the clas- 
sical successive-approximation method converges. Subsequent analysis of the resulting func- 
tional equation brings to light certain properties of the temperature field; they are used as a 
basis for an engineering computational method for the given heat-conduction problem. 

In connection with problems involving optimal control of heating for massive bodies, much attention 
is now being given to the development of analytic computational methods for nonstationary temperature fields 
where the high-intensity heat sources vary in temperature. The problem is one in mathematical physics, 
with a substantial nonlinearity in the boundary condition; the solution poses serious difficulties. As a rule, 
when we are concerned with the kinetics of heating, we employ various approximate, basically numerical 
computational methods. As an example, we have [1, 2],where a computer was used to obtain numerical data 
on the temperature field in solids heated by radiation, where the source temperature was variable. It was 
possible to use copious numerical material to analyze the radiant beat flux at the surface of the heated body, 
and to find a law governing the quasistationary regime in the heating-process dynamics. In [3], segments 
of cubic parabolas were used to approximate the thermal-conductivity and heat-capacity relationships in 
order to linearize the system of differential equations describing radiant heating. A similar approach was 
employed simultaneously and independently in [4]. Hoffmann [5] has given a rather cumbersome solution 
obtained with a pieeewise-linear approximation to the nonlinear intrinsic-emission flux. 

The present investigation, which represents a continuation of [1], was undertaken with the aim of ob- 
taining computational equations for the nonstationary temperature field with an arbitrary variation in 0e(Fo); 
analysis of the resulting solutions yields an engineering computational method for the most common types 
of variation in the temperature of radiant media. 

The mathematical model employed for the given physical problem is based on the heat-conduction 
equation 

O0(X, Fo) = X - V  8 I X  ~ 80(X, F o ) ]  (1) 
OFo L ] 

with initial condi t ion 

and boundary  condi t ions  

0 (X, O) = 0 o (2) 

00(0, Fo) _ 0, (3)  
OX 

00 (1, Fo) _ Sk [04 (Fo)-- 0' (1, Fo)], (4) 
OX 

w h e r e  0e(FO) is any d i f fe ren t iab le  funct ion,  0 -< X -< 1, 0 -< Fo -< ~ .  

Approx ima te  Analyt ic  Method.  A f o r m a l  r e p r e s e n t a t i o n  of the t e m p e r a t u r e  field can be obtained by 
reduc ing  the b o u n d a r y - v a l u e  p r o b l e m  (1)-(4) to a funct ional  equat ion.  Let  us d e t e r m i n e  the finite in tegra l  
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t ransform that permi t s  us to el iminate the differential  operations with respec t  to X. According to the 
general  theory of finite integral  t r ans fo rms  [6-8], the kernel  for  the d i rec t  t ransformat ion  is r ep resen ted  
a s  

K(X, p) 1 - - -  p (x )  ,~ ( x ,  p), (5) 
Cp 

l 

where Cp = ,l J p(X)[K(X, p)]2 dX is the normal iz ing factor .  
0 

The function K(X, p) is found f rom the solution of the corresponding S t u r m - L i o u v i l l e  boundary-value 
problem with the homogeneous boundary conditions 

- -  - -  X = 0  

dK x=z = 0; dK = 0, v = 0; (6) 

- -  X = 0  

dK < o o ,  v = 1,2. 
dX 

The eigenfunctions K of this problem are orthogonal on the segment [0, 1] with weight p(X), while the e igen-  
values p are  the posi t ive roots of the equation f(p) = 0. 

Pe r fo rming  the integral  t ransformat ion  with kernel  (5) and interval  of integration [0, 1], we t r ans -  
form the initial problem (1)-(4) to an ordinary  different ial  equation with respec t  to the image, including the 
specif ied boundary conditions, 

dO (p, Fo) 
dFo = --p~O(p, Fo) -i- @ [p, 0~(Fo), 04(1, Fo)], (7) 

where 
(9 =(--1)nSk[04(Fo)--04(1,  Fo)], p=nn,  n = 0 ,  I, 2, . . . ,  v = 0 ;  

The initial condition becomes 

dp=Jo(P) Sk[04(Fo)--O 4(1, Fo)], J ; (p)=O, v = l ;  

r  sinp Sk[04c(Fo)--04(1, Fo)], t g p = p ,  v=2.  
P 

1 

g(p, Fo) Oo S = - -  p (X) K ( p ,  X) dx. 
Cp 

0 

The solution of the t r ans fo rmed  problem (7), (8) is 
F o  

g (p, Fo) = exp [-- fFo]  (0 (p, 0) -[- �9 [p, 0~ (•), 04 (1 

0 

Using the inversion formula  [6-8] 

0(X, Fo)= Zg(p~, Fo)K(p~X), 
Pi 

we obtain an express ion  for  the t empera tu re  f ield 

(8) 

, ~1)] exp lP%II d~l}. (9) 

( 1 o )  

1 F o  

ZK(pi ,  X)exp(--p~Fo)[ 0~ ~p(X) K(p~, X)dX-t- j'cl)[p~, 0:(~), 04(I, ~1)] exp (p:rl)drl ]. (11) 0(X, Fo)= 
p~ Lcp oJ o 

Relationship (11) gives a formal  represen ta t ion  of the t empera tu re  at any point in the body in t e rms  of its 
value at the sur face .  Letting X = 1, f rom (11) we obtain a nonlinear  Vol te r ra  integral  equation of the second 
kind for  0(1, Fo): 
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1 

0(1, F o ) = ~ K ( p i ,  1)exp(--p~Fo) 0~ t' - -  9(X) K(p~, X) dX 
Pi Cp , 

0 

F o  

§ S Z ~ ( p ~  ' 1)(I) [pl ' 0~01),4 04 (1, ~1)] exp [--p:(Fo --~1)] d~ l. 

0 Pi 

(12) 

The method of success ive  approximations is one of the most effective ways of solving functional 
equations of the type (12). Proving the absolute and uniform convergence of the se r ies  following the inte-  
gral  sign, we use es t imates  of the type 

Z K ( p , ,  1)~ [Pi, 0401), 04 (1, ~1)] exp [--p~(Fo--~)] 
Pi 

< IZK(p , ,  t ) ~  [Pi, 0t01), 04(1, ~1)] exp [--p~(FO--~l)]] 
Pi 

<] r 0'(1, ~l)] II Zexp[-pV(vo-n)]l <]*[0'o(n), o (i, l[ I (13) 
p, 2 (Fo - -  ~1)1/2 ' 

to justify the changed o rde r  of summation and integration in (12). It also follows f rom (13) that the kernel  
of the integral  equation has a s ingulari ty at Fo = ~?. As Tikhonov has shown [9] in his investigations of non- 
l inear  Vol te r ra  integral  equations of the second kind, a s ingulari ty of the form (Fo-~?)-l/2 in the kernel  can 
easi ly be removed,  and the success ive-approximat ion  p rocess  converges for  such equations. Substituting 
the express ions  found for the sur face  t empera tu re  into (11) and per forming  the uncomplicated integration,  
we obtain the final solution for  the initial problem (1)-(4). 

Engineering Method. Fu r the r  investigation of (11) discloses  a cer ta in  proper ty  of the tempera ture  
field. The nonlinear  functional equation (11) is difficult to solve owing to the p resence  of the te rm of the 

F o  

form I 04(1' ~) exp (p~)d~.  Let  us evaluate this integral ,  
0 

F o  n - - i  

S 04 (1, ~l) exp (p~q) d~ 1 ~ Z O' (1, %)exp (p~%) ABa, (14) 
0 k = 0  

where c~ k is an a rb i t r a ry  point on the part ial  segment it/k, ~k+l]- Writing out the se r ies  (14) and isolating 
its f i r s t  t e rm with allowance for  the initial condition (2), we obtain 

n - - ]  

e~a~ h + ~_, 04 (1, %) exp (p~%) A~ h. (15)  
k= l  

Remember ing  that the integrand is s t r ic t ly  increasing,  we now have no difficulty in seeing that for 
modera te  values of 00, the value of the integral  is a very  weak function of the t empera tu re  level at the be -  
ginning of heating. Then the integral  (14), which represen t s  the se l f - radia t ion  of the body, will be evaluated 
with a ce r ta in  e r r o r .  But in the heating of mass ive  bodies,  the decisive ro le  is played by internal heat 
t r ans fe r ,  so that slight dis tor t ions in the resul tant  heat flux owing to approximate determinat ion of the se l f -  
radiat ion may not substantial ly modify the t empera tu re  field. 

Thus on the basis of the approximate es t imate  of (14), using (11), we can establish the existence of a 
near ly  l inear  re la t ionship of the t empera tu re  f ield with respec t  to 0 o for  identical values of the controll ing 
c r i t e r i a  Sk, X, Fo, 0 c. 

Analysis of t empera tu re  fields computed from (11), (12) shows that this proper ty  is sat isf ied up to 
values 00 = 0.6. 

The mathemat ica l ly  obtained law is expressed  as 

0 (X,  Fo) - -  0* (X,  Fo) 0"* (X,  Fo) - -  0* (X,  Fo) 
- - -  **  * , 

0 o - -  0~ - -  00 - -  Oo (16) 

where 0*(X, Fo), 0**(X, Fo) are  the respec t ive  dimensionless  t empera tu res  for  the minimum (0~)and the 
maximum (0~*) values of initial t empera tu re  for  the same values of Sk, X, Fo, 0 c. The s t ruc ture  of (16) 
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is such that when the tempera ture  distributions are known, for  two values of the initial temperature  we can 
compute the tempera ture  field for a rb i t ra ry  00, 

0 (X, Fo) = O* (X, Fo) 4- (0 o - -  0o) 0'* (X, Fo) - -  O* (X, Fo) 
O~* - -  8o (17) 

The more  effective relat ionship (17) can be real ized graphically;  to do this, we must know the solu-  
tions for two values of 00. We obtained the solutions by numerical  intergrat ion of Eqs. (11), (12) on an 
M-20 computer ,  with the process  pa ramete r s  Sk = 0-4, Fo = 0-o~, with a l inear variation in the emit ter  
tempera ture ,  0c(FO ) = 1 + PdFo,  where P d =  0-0.25; 00 was taken equal to 0.2 and 0.6. 

Figure 1 (A-D) shows computational nomograms for  determining the dimensionless temperatures  at 
the surface and at the center  of an unbounded plate, and also at the surface and on the axis of an infinite 
cylinder.  

Comparing our calculated resul ts  with reference  data obtained by computer ,  we see that for the r e l a -  
tive t empera tu res ,  the deviations do not exceed 1-2%, and tend to make the results  too low. It should be 
noted that a s imi lar  approach can be used to investigate radiant heat-conduction p rocesses  in mult idimen-  
sional bodies (a cyl inder  of finite dimens ions, a p r i sm,  a parallelepiped),  and can also be employed for other 
types of variat ion in the tempera ture  of the radiating medium (exponential, parabolic ,  etc.). 

We also note that the proposed nomograms can also be used when 00 < 0.2. Computational accuracy  
can be improved if we employ solutions for  a na r rower  range of values of the initial temperature .  

The key to the nomograms is shown in Fig. 1 for the following process  pa rame te r s :  P d =  0.15; Sk 
= 1.0; Fo = 0.15; 00 = 0.35. The desi red relative tempera ture  at the surface of an unbounded plate is 

0su r = 0.736. 

0 = T/To0 

Sk = (Za(Tc0/100)3R/2~ �9 1 O0 
1) 

Pd = kR2/Tc0 a 

N O T A T I O N  

is the relat ive tempera ture ,  i.e., the ratio of the instantaneous temperature  to 
the initial tempera ture  of the heat source;  
is the radiation Stark number;  
is a coefficient that allows for the shape of the body, and is numerical ly  equal 
to 0, 1, and 2 for the plane, cyl indrical ,  and spherical  problems;  
is the Predvodi telev number  for  heating at a constant rate.  

1~ 

2. 

3~ 

4. 
5. 
6. 

7. 

8. 

9. 
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